[C++]使用yolov10的onnx模型结合onnxruntime和bytetrack实现目标追踪

【官方框架地址】 

yolov10yolov10框架:https://github.com/THU-MIG/yolov10

bytetrack框架:https://github.com/ifzhang/ByteTrack

【算法介绍】

Yolov10与ByTetrack:目标追踪的强大组合

Yolov10和ByTetrack是两种在目标追踪领域具有显著影响力的技术。当它们结合使用时,可以显著提高目标追踪的准确性和实时性。

Yolov10是Yolov系列算法的最新版本,它在目标检测方面具有出色的性能。相较于之前的版本,Yolov10在精度和速度上都进行了优化,使其成为实时目标检测的理想选择。通过结合ByTetrack,Yolov10可以更有效地应用于目标追踪任务。

ByTetrack是一种基于轨迹匹配的目标追踪方法。它利用目标的运动信息和外观特征进行追踪,能够在复杂场景下实现稳定的目标追踪。ByTetrack的优势在于其强大的鲁棒性和适应性,即使在目标被遮挡或出现运动模糊的情况下,它仍能保持较高的追踪精度。

当Yolov10与ByTetrack结合使用时,Yolov5首先检测视频中的目标,并生成目标的初始位置和运动轨迹。然后,ByTetrack利用这些信息对目标进行精确追踪。这种结合方式既发挥了Yolov10的高检测精度,又利用了ByTetrack的高追踪精度,使得整体目标追踪效果显著提升。

综上所述,Yolov10与ByTetrack的结合为解决复杂场景下的目标追踪问题提供了新的解决方案。随着人工智能技术的不断进步,这种结合方式有望成为目标追踪领域的研究热点和发展趋势。通过进一步的研究和优化,我们可以期待这种组合在未来的目标追踪任务中发挥更大的潜力。

【效果展示】

【实现部分代码】

#include "YOlov10Manager.h"
#include <iostream>
#include <opencv2/opencv.hpp>
#include "BYTETracker.h"
#include <fstream>
#include <iomanip>
#include <time.h>
#include <chrono>
#include "util.h"
#include <map>
#include<vector>
#include<algorithm>



using namespace std;
using namespace cv;




void bytetrack_update(const std::vector<Detection>& res, std::vector<Object>& obj, const int& class_id ){
      for (size_t i = 0; i < res.size(); i++){
          try
            {
              if (res[i].class_id != class_id){ continue; }
              obj[i].label = res[i].class_id;
              obj[i].rect.x = res[i].bbox.x;
              obj[i].rect.y = res[i].bbox.y;
              obj[i].rect.height = res[i].bbox.height;
              obj[i].rect.width = res[i].bbox.width;
              obj[i].prob = res[i].confidence;
            }
          catch(const std::exception& e)
            {
              std::cerr << e.what() << '\n';
            }        
      }

};
int main(int argc, char const *argv[])
{

   std::map<int, std::vector<int>> object_id_list;
    const std::vector<std::string> classNames = util::loadNames("labels.txt");
    const int class_id = 2;//只想追踪的目标
    std::string model_path="yolov10n.onnx";
    Yolov10Manager detector(model_path);
    cv::Mat frame;
    std::vector <double> avg;
    cv::VideoCapture cap("car.mp4");
    std::chrono::time_point<std::chrono::high_resolution_clock>prev_frame_time(std::chrono::high_resolution_clock::now());
    std::chrono::time_point<std::chrono::high_resolution_clock>new_frame_time;
    int frame_width  =  cap.get(cv::CAP_PROP_FRAME_WIDTH);
    int frame_height =  cap.get(cv::CAP_PROP_FRAME_HEIGHT);
    int fpsvideo = cap.get(cv::CAP_PROP_FPS);
    cv::namedWindow("Camera", cv::WINDOW_NORMAL);
    BYTETracker tracker(fpsvideo, 30);

    while (cap.isOpened()) {
        cap >> frame;
        if (frame.empty())
        {
          break;
        }
        
        std::vector<Object> obj;
        auto results = detector.Inference(frame);
        const int num = results.size();
        obj.resize(num);
        bytetrack_update(results, obj, class_id);
        std::vector<STrack> output_stracks = tracker.update(obj);

      for (size_t i = 0; i < output_stracks.size(); i++){
          std::vector<float> tlwh = output_stracks[i].tlwh;
          cv::Scalar __color = tracker.get_color(output_stracks[i].track_id);
          cv::putText(frame, std::to_string(output_stracks[i].track_id), cv::Point(tlwh[0], tlwh[1] - 10), cv::FONT_ITALIC, 0.75, __color, 2);
          cv::rectangle(frame, cv::Rect(tlwh[0], tlwh[1], tlwh[2], tlwh[3]), __color, 2);    
      }


        //cv::imwrite("demo.jpg", frame);
        new_frame_time = std::chrono::high_resolution_clock::now();
        std::chrono::duration<double> duration1(new_frame_time - prev_frame_time);
        double fps = 1/duration1.count();
        
        avg.push_back(fps);


        std::cout <<"FPS: " << fps <<  std::endl;
        prev_frame_time = new_frame_time;

        cv::imshow("Camera", frame);
        if (cv::waitKey(1) == 27) {
          break;
        }


}

    cap.release();
    cv::destroyAllWindows();

    return 0;
}

【视频演示】
基于opencv和onnxruntime的C++版本yolov10-onnx和bytetrack追踪算法实现目标追踪_哔哩哔哩_bilibili测试环境:vs2019cmake==3.24.3opencv==4.7.0onnxruntime==1.12.0更多信息参考博文:, 视频播放量 2、弹幕量 0、点赞数 0、投硬币枚数 0、收藏人数 0、转发人数 0, 视频作者 未来自主研究中心, 作者简介 未来自主研究中心,相关视频:AI换脸真变态,绅士必备的一键启动包!,使用纯opencv部署yolov8目标检测模型onnx,基于yolov8+bytetrack实现目标追踪视频演示,易语言部署yolox的onnx模型,C语言、C++和C#的区别竟是这样,看完我瞬间懂了!,基于yolov8官方目标追踪botsort和bytetrack源码开发视频演示,基于C++版本yolov5-onnx和bytetrack追踪算法实现目标追踪,使用C++部署yolov8的onnx和bytetrack实现目标追踪,将yolov8封装成一个类几行代码完成语义分割任务,使用C#的winform部署yolov8的onnx实例分割模型icon-default.png?t=N7T8https://www.bilibili.com/video/BV1rZ421M77T/
【测试环境】
 opencv==4.7.0 onnxruntime==1.12.0 vs2019 cmake==3.24.3 

 【源码下载地址】

https://download.csdn.net/download/FL1623863129/89442051

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/714598.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

算法体系-21 第二十一 暴力递归到动态规划(三)

一 最长回文子串 1.1 描述 给定一个字符串str&#xff0c;返回这个字符串的最长回文子序列长度 比如 &#xff1a; str “a12b3c43def2ghi1kpm” 最长回文子序列是“1234321”或者“123c321”&#xff0c;返回长度7 1.2 分析 1.2.1 先将原传逆序&#xff0c;求原串和反转后的…

代理IP协议有何区别?深入了解 SOCKS5、HTTP 代理

在数字通信领域&#xff0c;数据安全和匿名性都是非常重要的指标。互联网的不断发展催生了几种协议&#xff0c;每种协议都有独特的优势和挑战。其中&#xff0c;SOCKS5 代理、HTTP代理最为广泛使用&#xff0c;下面给大家一起讨论&#xff0c;HTTP代理与 SOCKS5代理&#xff0…

基于微信小程序的在线答题小程序设计与实现

个人介绍 hello hello~ &#xff0c;这里是 code袁~&#x1f496;&#x1f496; &#xff0c;欢迎大家点赞&#x1f973;&#x1f973;关注&#x1f4a5;&#x1f4a5;收藏&#x1f339;&#x1f339;&#x1f339; &#x1f981;作者简介&#xff1a;一名喜欢分享和记录学习的…

MySQL基础——SQL语句

目录 1.SQL通用语法 2.SQL分类 3 DDL 3.1数据库操作 3.1.1查询 3.1.2创建 3.1.3删除 3.1.4使用 3.2表操作 3.2.1查询 3.2.2创建 3.2.3数据类型 3.2.4表修改&#xff08;alter打头&#xff09; 3.2.5表删除&#xff08;drop/truncate打头&#xff09; 3.3 DDL总结…

C#联合Halcon机器视觉框架源码—升级版

相较于之前的NxtVision&#xff0c;本软件代码架构更加合理&#xff0c;且新增ui设计器、原来的vb脚本改为C#脚本&#xff0c;并尝试将视觉与运动控制相结合&#xff0c;是一体化的框架。 对源码有需求的&#xff0c;订阅本专栏后&#xff0c;私信我领取。

用python纯手写一个日历

一、代码 # 月份名称数组 months ["January", "February", "March", "April", "May", "June","July", "August", "September", "October", "November", &qu…

JVM如何确定方法调用

方法调用并不等同于方法执行&#xff0c;方法调用阶段唯一的任务就是确定调用哪一个方法&#xff0c;不涉及方法内部的具体运行过程。在程序运行时&#xff0c;进行方法调用是最普遍、最频繁的操作&#xff0c;但Class文件的编译过程中不包含传统编译中的连接步骤&#xff0c;一…

Python | 中心极限定理介绍及实现

统计学是数据科学项目的重要组成部分。每当我们想从数据集的样本中对数据集的总体进行任何推断&#xff0c;从数据集中收集信息&#xff0c;或者对数据集的参数进行任何假设时&#xff0c;我们都会使用统计工具。 中心极限定理 定义&#xff1a;中心极限定理&#xff0c;通俗…

英语学习笔记36——Where ... ?

Where … ? ……在哪里&#xff1f; 词汇 Vocabulary beside prep. 在……旁边 同义词&#xff1a; near by 构成&#xff1a;be side side n. 边 搭配&#xff1a;side walk 人行道 例句&#xff1a;Bobby在我旁边。    Bobby is beside me. off prep. 离开&#xff…

【数据库编程-SQLite3(一)】sqlite3数据库在Windows下的配置及测试

学习分析 1、资源准备2、环境配置2.1、将资源包下载解压缩保存。2.2、在QT中创建工程,配置环境 3、测试配置3.1、 sqlite3_open函数3.2、sqlite3_close函数3.3、代码测试 1、资源准备 资源包 2、环境配置 2.1、将资源包下载解压缩保存。 解压缩得到以下文件 2.2、在QT中创建…

30 天 52% 回报:GPT-4o 量化交易机器人

本文介绍了如何利用GPT-4o&#xff0c;结合量化交易技术创建盈利的交易机器人策略&#xff0c;并通过回溯测试验证这一策略的有效性。原文: 52% Returns in 30 Days: Your GPT-4o Quant Trading Bot Strategy 量化交易可以盈利&#xff0c;但只有拥有丰富资源、拥有编码和数学技…

解决 Vue-Element-admin 后台请求Uncaught (in promise) Object

文章目录 问题描述原因分析解决方案 问题描述 前端Vue-Element-admin与SpringBoot后端对接login接口后&#xff0c;后端login接口正常响应&#xff0c;但在前台无法登入系统&#xff0c;浏览器控制台报了 Uncaught (in promise) Object 错误。 报错详情如下所示&#xff1a;…

不一样的SYSTEM APP(SYSTEM flag和system_prop区别)

1.问题引入 在Android开发中, 1)Framework中PackageManager扫包后,会把app归类为SYSTEM, SYSTEM_EXT, PRIVILEGED 类别. 2)同样的, SeAndroid也会把APP归类程platform_app, system_app, untrusted_app(甚至还有其他,mediaprovider,gmscore_app). flag SYSTEM和system_app我们…

Linux中的yum和vim

Linux软件包管理 一.什么是软件包二.如何查看软件包二.如何安装软件三.vim编辑器3.1在vim编辑器中有三种模式&#xff0c;即命令模式插入模式低行模式 3.2vim的基本操作3.3vim末行模式命令集 一.什么是软件包 有些人把一些常用的软件提前编译好, 做成软件包(可以理解成windows上…

Android 自定义View

我们所有的试图都是起源于自定义View&#xff0c;包括ViewGroup也是继承于它&#xff0c;可以说它是视图组件之父。 我们可以从它的大致流程来分为四个部分&#xff1a; 构造方法&#xff0c;onMeasure&#xff0c;onLayout&#xff0c;onDraw 构造方法&#xff1a; 它主要有…

14 学习PID--步进电机梯形加减速实现原理

步进电机加减速使用的场景有那些呢&#xff1f;为什么要使用加减速呢&#xff1f; 硬件驱动细分器与软件的细分参数或定时器分频参数设置不当时启动电机时&#xff0c;会遇见步进电机有啸叫声但是不会转动&#xff0c;这是因为软件产生脉冲的频率大于步进电机的启动频率&#x…

大数据入门实践一:mac安装Hadoop,Hbase,FLume

一、安装Hadoop 安装hadoop参考此文&#xff0c;关键点是安装JDK和Hadoop的配置&#xff0c;为避免引用文章变收费&#xff0c;我把关键信息摘录如下&#xff1a; jdk安装和配置就不说了(我本机安装了1.8/15/17/21&#xff0c;以17为主&#xff09;&#xff0c;hadoop安装过程…

2024/6/16周报

文章目录 摘要Abstract文献阅读题目问题本文贡献方法aGNN输入和输出模块嵌入模块编码器和解码器模块&#xff1a;支持多头注意的GCN多头自注意力机制GCN模型解释&#xff1a;SHAP 案例研究地下水流动与污染物运移模型研究场景设计 数据集实验结果 代码复现结论 摘要 本周阅读了…

Java项目之消息队列(手写java模拟实现mq)【七、⽹络通信协议设计、消息队列服务器端实现、客户端实现】✔ ★

⼗⼀. ⽹络通信协议设计 定义 Request / Response /** 表示一个网络通信中的请求对象. 按照自定义协议的格式来展开的*/ public class Request {private int type;private int length;private byte[] payload;public int getType() {return type;}public void setType(int typ…

AI探索:最佳落地应用场景

如果说今年的风口&#xff0c;那一定是 AI。不过AI像一把双刃剑&#xff0c;既有助益也有风险。我们将从IBM Watson的高飞与坠落&#xff0c;到Google Allo的黯然失色&#xff0c;探索AI应用中的教训。同时&#xff0c;瑞幸咖啡的成功故事展现了凭借策略得当的AI应用&#xff0…